36 research outputs found

    Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach

    Get PDF
    Transformer-based models have been utilized in natural language processing (NLP) for a wide variety of tasks like summarization, translation, and conversational agents. These models can capture long-term dependencies within the input, so they have significantly more representational capabilities than Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN). Nevertheless, these models require significant computational resources in terms of high memory usage, and extensive training time. In this paper, we propose a novel document categorization model, with improved parameter efficiency that encodes text using a single, lightweight, multiheaded attention encoder block. The model also uses a hybrid word and position embedding to represent input tokens. The proposed model is evaluated for the Scientific Literature Classification task (SLC) and is compared with state-of-the-art models that have previously been applied to the task. Ten datasets of varying sizes and class distributions have been employed in the experiments. The proposed model shows significant performance improvements, with a high level of efficiency in terms of parameter and computation resource requirements as compared to other transformer-based models, and outperforms previously used methods

    Experimental Exploration of Compact Convolutional Neural Network Architectures for Non-temporal Real-time Fire Detection

    Get PDF
    In this work we explore different Convolutional Neural Network (CNN) architectures and their variants for non-temporal binary fire detection and localization in video or still imagery. We consider the performance of experimentally defined, reduced complexity deep CNN architectures for this task and evaluate the effects of different optimization and normalization techniques applied to different CNN architectures (spanning the Inception, ResNet and EfficientNet architectural concepts). Contrary to contemporary trends in the field, our work illustrates a maximum overall accuracy of 0.96 for full frame binary fire detection and 0.94 for superpixel localization using an experimentally defined reduced CNN architecture based on the concept of InceptionV4. We notably achieve a lower false positive rate of 0.06 compared to prior work in the field presenting an efficient, robust and real-time solution for fire region detection

    Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): an ambulance-based, randomised, sham-controlled, blinded, phase 3 trial

    Get PDF
    Background High blood pressure is common in acute stroke and is a predictor of poor outcome; however, large trials of lowering blood pressure have given variable results, and the management of high blood pressure in ultra-acute stroke remains unclear. We investigated whether transdermal glyceryl trinitrate (GTN; also known as nitroglycerin), a nitric oxide donor, might improve outcome when administered very early after stroke onset. Methods We did a multicentre, paramedic-delivered, ambulance-based, prospective, randomised, sham-controlled, blinded-endpoint, phase 3 trial in adults with presumed stroke within 4 h of onset, face-arm-speech-time score of 2 or 3, and systolic blood pressure 120 mm Hg or higher. Participants were randomly assigned (1:1) to receive transdermal GTN (5 mg once daily for 4 days; the GTN group) or a similar sham dressing (the sham group) in UK based ambulances by paramedics, with treatment continued in hospital. Paramedics were unmasked to treatment, whereas participants were masked. The primary outcome was the 7-level modified Rankin Scale (mRS; a measure of functional outcome) at 90 days, assessed by central telephone follow-up with masking to treatment. Analysis was hierarchical, first in participants with a confirmed stroke or transient ischaemic attack (cohort 1), and then in all participants who were randomly assigned (intention to treat, cohort 2) according to the statistical analysis plan. This trial is registered with ISRCTN, number ISRCTN26986053. Findings Between Oct 22, 2015, and May 23, 2018, 516 paramedics from eight UK ambulance services recruited 1149 participants (n=568 in the GTN group, n=581 in the sham group). The median time to randomisation was 71 min (IQR 45–116). 597 (52%) patients had ischaemic stroke, 145 (13%) had intracerebral haemorrhage, 109 (9%) had transient ischaemic attack, and 297 (26%) had a non-stroke mimic at the final diagnosis of the index event. In the GTN group, participants’ systolic blood pressure was lowered by 5·8 mm Hg compared with the sham group (p<0·0001), and diastolic blood pressure was lowered by 2·6 mm Hg (p=0·0026) at hospital admission. We found no difference in mRS between the groups in participants with a final diagnosis of stroke or transient ischaemic stroke (cohort 1): 3 (IQR 2–5; n=420) in the GTN group versus 3 (2–5; n=408) in the sham group, adjusted common odds ratio for poor outcome 1·25 (95% CI 0·97–1·60; p=0·083); we also found no difference in mRS between all patients (cohort 2: 3 [2–5]; n=544, in the GTN group vs 3 [2–5]; n=558, in the sham group; 1·04 [0·84–1·29]; p=0·69). We found no difference in secondary outcomes, death (treatment-related deaths: 36 in the GTN group vs 23 in the sham group [p=0·091]), or serious adverse events (188 in the GTN group vs 170 in the sham group [p=0·16]) between treatment groups. Interpretation Prehospital treatment with transdermal GTN does not seem to improve functional outcome in patients with presumed stroke. It is feasible for UK paramedics to obtain consent and treat patients with stroke in the ultraacute prehospital setting. Funding British Heart Foundation

    Recognition of wind speed patterns using multi-scale subspace grids with decision trees

    No full text
    The wind speed patterns are essential and indispensable requirement for the efficient utilization of the wind power generated by wind turbines. For this reason, this paper proposes a new approach in order to recognize the wind speed patterns from the multidimensional meteorological data. The meteorological dataset used in this study includes wind direction, air temperature, atmospheric pressure, relative humidity and wind speed parameters. Firstly, the proposed approach eliminated the dimensionality problem of the total dataset by means of obtaining the lower dimensional subspaces with the principal component analysis and the multiple discriminant analysis. Secondly, the proposed approach alleviated the problem of small sample sizes by means of achieving the coarse scales as generic rules at the lower dimensional subspaces. The total dataset includes 3244 observations for each meteorological parameter. In this study, 3100 data points were used for extracting the rules and 144 data points were utilized for testing the extracted rules. As a result, it is mined that the proposed approach leads to reveal the wind speed patterns in a usable and comprehensive manner

    Intracorporeal Lithotripsy for Ureteral Calculi Using

    No full text
    At present the techniques available for performing intracorporeal lithotripsy include electrohydraulic, ultrasonic, laser, and ballistic lithotripsy. We present our experience with a unique technology for performing intracorporeal lithotripsy, namely the Swiss lithoclast, which is a form of ballistic lithotripsy. This simple and inexpensive device uses compressed air to activate a solid probe in a manner similar to that of a jackhammer. We report the use of this lithoclast in 92 patients involving a total of 95 ureteral calculi. The lithoclast successfully fragmented 81 of the 95 calculi, a success rate of 85.26%. There were no major complications directly related to the use of this device. The Swiss lithoclast seems to be a safe, effective and an inexpensive means of performing intracorporeal lithotripsy for ureteral calculi.The Department of Urology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, J&K-190011, India
    corecore